
International Journal of  Theoretical Physics, Vol. 12, No. 2 (1975), pp. 81-93 

D i f f r a c t i o n  o f  a P l a n e  E l e c t r o m a g n e t i c  W a v e  at a 

S c h w a r z s c h i l d  B l a c k  H o l e  

E. HERLT and H. STEPHANI 

Abteilung Relativistische Physik, Sektion Physik, Friedrich-Schiller- 
Universiti~t Jena, DDR 

Received: 11 January 1974 

Abstract 

Using the technique of Debye potentials a rigorous solution of the diffraction problem 
is given as a superposition of an incident wave, strongly connected with the Coulomb 
scattering wave function, and a scattered wave, which is purely outgoing for large 
distances. The solution fulfils the boundary conditions to be the light of a very distant 
star and to be purely ingoing at the Schwarzschild horizon. The phase shifts of the 
partial waves are evaluated in the WBK approximation. 

1. Introduction 

The deflection o f  light rays coming from a distant star and passing the sun 
was one of  the first problems solved in the history o f  general relativity, and 
it is nowadays treated in every tex tbook.  Our goal is to give a full wave 
theoretical  t reatment  o f  this problem. Because in the most  interesting cases 
the Schwarzschfld radius will be large compared with the wavelength of  the 
electromagnetic field, the results will not  differ significantly from those of  
geometrical  optics, with the exception o f  the regions in the geometrical  
shadow or the regions where each point is passed by more than one ray. 

This paper starts with a short account o f  notations,  the technique of  
Debye potentials and some properties of  generalised plane waves. The main 
results are in Section 3 the phase shifts (3.4), (3.8) and (3.10) o f  the partial 
waves; in Section 4 the asymptot ic  form (4.7) o f  the incident  wave, in 
Section 5 the evaluation (5.8) of  the partial wave amplitudes,  and in Section 
6 the representation (6.6) of  the Debye potent ia l  of  the incident wave in terms 
of  the Coulomb scattering function. 
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2. Metric, Debye Potentials and Generalised Plane Wave 

It is convenient to use besides the Schwarzschild metric 

r r - 1  a e  2 = r2(dO 2 + sin 2 0 d~o 2) + dr 2 ....... d t  2 
r - 1  r 

the metfic 

(2.1) 

r 3 
ds 2 = (dO 2 +sin 20d~o2)+dv z - d t  2, v =r  + l n ( r -  1) (2.2) 

r - 1  

which is conformally equivalent to (2.1). Distances are measured in units of 
the Schwarzschild radius. 

To get the general solution of Maxwell equations in this background, one 
has to solve the Debye equation (Stephani, 1974) 

F 3 [ ~b q s i n  I~ sin 0 ~ + sin2------ ~ ~ 2  ] "~ 0V 2 --  ~ = 0 (2.3) 

and to insert two general solutions rr and ¢ into 

A a  = 7r,n(un va - vnua)  + eabpq f~'bVpUq (2.4) 

~a = ( o , o ,  1 , o )  u ~ = ( o , o ,  o ,  I)  

Formula (2.4) holds in the metric (2.2), but Aa is the four potential of an 
arbitrary field in the physical space-time (2.1) too: 

l~a~ = Ab ,  a -- Aa,  b (2.5)  

In flat space-time a plane, monochromatic, linearly polarised electro- 
magnetic wave travelling in the z-direction, with the non-zero components 

Ex = Hy  = e ic° ( z -  t) (2.6) 

belongs to Debye potentials connected by 

7r = P(r, O) cos ~0 e - iw t ,  q~ = - P ( r ,  O) sin ~o e - i w t  (2.7) 

(H6nl et al., 1961). As the symmetry with respect to rotations around the 
z-axis is not altered by the gravitational field (2.7) is valid for our problem 
too. Change of polarisation changes the relation (2.7) between rr and ~b, but 
does not affect P. Because of the Debye equation (2.3) P has to fulfil 

r - l [  1 a 0P P ] + 3 2 P  
r 3 [sin 0 30 sin O ~0 - s in2~]  ~ v  2 + w2P = 0 (2.8) 
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and the components of  the electromagnetic field are in terms of  P 

FO~ = a sin 99 e -ie°t  F~t = 8 sin 99 e -ieot 

f o 0  = 6 c o s  99 e_iCot r - -  1 COS ¢ -loot 
sin 0 Fot = a r3 sin 0 e 
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(2.9) 

with 

C O S ~  e_iCot 
For = ~ sin 0 

a = - sin 0 

F~v =/3 sin 99 e-i¢ot 

3 1 3 
30 sin 0 8v (sin OP) 

t3=sinO~--~vP+icoP (2.10) 

0P 0P 
6 = - i{o  sin 0 - -  - - -  

00  Ov 

The general solution o f  the reduced Debye equation (2.8) is 

P(r, 0) = ~ DnRn(r)Pln(cos 0) (2.11) 
n = I  

Here Pl (cos  0)  are the Legendre functions, Dn arbitrary constants and Rn 
solutions of  the radial equation 

d2Rn co2 
dr--- T" + [1 - -  a 2 V(v)]Rn  = 0 

a2_n(n+l)  V(v) r - 1  
_ = r ~ (.0 2 ' 

(2.12) 

To solve our diffraction problem means to fred a solution of  (2.8) which 
(a) corresponds for 0 ~ 7r, r -~ o~(z -+ - ~ )  to an incident plane wave and 
(b) is purely ingoing at r = 1 (v = _o.) .  In terms of  (2.11) condition (a) will 
give us the Dn, whereas condition (b) singles out one of  the two independent 
solutions of  the radial equation. 

3. The Radial Equation 

The radial equation (2.12) was studied by  several authors interested in 
electromagnetic radiation fields in the Schwarzschild background; an in- 
complete list is Mo & Papas (1970), Price (1972), Misner et al. (1972), 
Breuer et al. (1973), Ruffini et at. (1972), Stephani & Herr  (1973). Matzner 
(1968) dealt with a similar equation valid for scalar waves. 
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Written in the variable r the radial equation reads 

d2Rn 1 dRn +[ co2r 2 n(n + 1)] 
dr 2 +r ( r -  1) dr [-~- 1 -~rr---~ Rn =0 (3.1) 

According to our boundary condition at r = 1, we have to take a solution Rn 
which is a purely ingoing wave at v = _ o o  This is fulfilled by a wave e -iw°, 
coming from v = +oo and being reflected or transmitted by the potential V(v). 

V(u) 1 i a 2 < 27 
/ 

0 . 1 5 ~ -  ~ a 2 

0.0~ 

1 I 
- 5  0 5 1()" u 

r=~  

Figure 1 .-Radial waves reflected and/or transmitted by the potential V(o). 

No exact solution is known for n ¢ 0, and we have to use approximation 
methods. The frequency co-which in our units is the number of  wavelengths 
per Schwarzschild radius-is large for most of  the applications, and so the 
WKB-approximation is applicable: 

Rn(v) = A(v) e ~ i¢os(v) 

O 

S(v) = ; V/[1 - a 2 V(v)] dr, A(v)  = [1 - a z V(v)] - lm (3.2) 

The result will be simple and of  practical use only in the region near the 
black hole (r -+ 1, v --> _oo) or for large distances (r -+ 0% v -> +oo): in both 
cases V(v) tends to zero, and all information is contained in the phase shift of  
the in- and out-going waves. We now will calculate these phase shifts for the 
three cases physically significant. 

Case i: a 2 < 27/4 
These partial waves with small angular momentum correspond to light rays 

entering the black hole. A wave e -iwv passes from v = +oo to v = _oo and gets 
the total phase shift coAtS: 
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V =+°° :  R n = e  -i~°v 

v = _oo : Rn  = e-i~°(v-Zx~ S) 
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(3.3) 

ZXlS= I ( l - v  ' I I - a~v(~) l ?a~=  i 1 -  - a  ~ - 1  r a~ 
- - ~  1 r - -  1 

We evaluate this elliptic integral by expanding the square root in a series 
with respect to a 2 and integrating term by term: 

2 ( 1 t ~  ( l )  A1S  = a 2 m ( _ l ) m  :f (_ i )  1 m--  1 
m ~ l 2 m + l  1 m--1 ~i ~ l=o  \ - 

(3.4) 
= ½a 2 + ~ a '  + ~ , ~  + ~ a  ~ + 6 *  r ~ a  t° + "  

The accuracy of this series can be tested by comparing the value for 
a 2 = 27/4 with the exact value 4,4390295. . .  (in this special case the integral 
is not elliptic). 

Case II." a 2 > 27/4 
These partial waves with large angular momentum correspond to light rays 

passing outside r = 3/2. An ingoing wave e -i~v is completely reflected and gets 
the total phase shift w2x2S (including the typical WBK shift n/2 near the 
classical turning point Vo) 

V = + o o  : R n  = e - i c o v  _ e iOO(v - zx2  S )  

zx2s = 2 J ~1 - x /J1 - a 2 v ( v ) ] )  av + 2vo - ~ (3 .5)  
2w % 

7r 
= 2 1  + 2 V o  - 

There are two ways of evaluating this elliptic integral in the form of a series. 
Both start from 

I =  y { l - J [ 1  (rf~W~);3]}rowr~w d w - 1  (3.6) 

1 

which follows from (3.5) after substitution ofa  2 = r3/(ro - 1) and r = ro w. 
The first is to write I as 

I = r  o 12 w21 ji1 1 ]/(1+ ldw 
1 ~ ~ ]  - w ( w  + 1)(r o - 1) row 1 3.7) 

1 



86 E. HERLT AND H. STEPHANI 

to expand the second square root, to integrate term by term, and to make a 
second expansion in powers ofa. The result of  this rather lengthy calculation 
is 

I =  - ~ - 1  a + 1 - i n  2 +  1 -  --+a 3 a  2 -  + " " " (3.8) 

This series is useful for large values o f  a, but  converges rather badly near 
a 2 = 27/4 and not  at all at this point. 

The second way is to expand the square root in (3.6): 

2 I ' l ' 3 " " ( 2 m - 3 )  f r2°w [ r°----w-1 ] rn 
I :  Im = -1 -,'2~-4-.-,:~m ro--W--- 1L(ro- 3 dw 

m = 1 m = 1 t (3.9) 

The final result will be a series o f  the form 

B2 B3 ] I = r~ B 1 + + + . . .  (3.10a) 
t o - 1  t o - 1  (ro---1) 2 

but unfortunately each of  the B m is an infinite sum of  contributions o f  
different Ira. But by substituting a 2 = rao/(ro - 1) into (3.10a) and reordering 
we can express B 1 . .  • B4 in terms of  the coefficients o f  (3.8) and guess the 
values of Bs and B6: 

7r 
B I = - ~ -  1 B 4  _ .~4fr 31 - - 1 ~ - 3 1 n 2  

B2 = ~ - In 2 - -~ Bs ~ 0,000 125 (3.10b) 
4 

B 3 = 2 In 2 - ½ - ~Tr B 6 ~ 0 , 0 0 0  05 

The series (3.10) is convergent for a 2 ~> 27/4; the exact value for a 2 = 27/4 
is I = 2,8558. 

Case III: a 2 ~ 27/4 
For classical turning points near the summit of  the potential V(v) (for 

rays grazing r = 3/2) the WBK approximation fails. Following Ford et al. 
(1959), near the summit we take the exact solution o f  the radial equation 
with a parabolic potential, and combine it with the WBK solution outside this 
region. We will not go into the details, but just give the main results. 

Using the notation N(N + I) = (27/4) 6o 2, n = N + p,  the properties o f  the 
reflected and transmitted waves can be given in terms o f  the parameter 
e = - 1,208,o. 
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The ratio of  the amplitudes of  the reflected and transmitted waves, taken 
at points o f  the same V(v), is 

gnre(s~O_.[ = e-,re (3.11) 
Rn(tr.)  1 

This shows, that at most four partial waves give a practically non-zero ratio 
and are, therefore, not included in Case I or II of  this section. For large 
negative v the transmitted wave is 

e-iCov erie/4 

Rn [e~re/2 + e-3~re/2] 1/2 

x exp [--i(4,48637co -- e(ln co - 0,49742 - 0,06766e2))] (3.12) 

For large positive v the incident plus reflected waves behave like 

eiWV e-3n/4 
R n = e -iwv -- [erie~2 + e_3~re/2]l/2 (3.13) 

7r 
x exp [ - i (7 ,37182co - ~- - e(tn co - 0,1066 - 0,06767e2))] 

We close this section on properties of  the radial functions Rn with the 
remark that one can obtain approximation solutions in terms of  Bessel and 
Weber-Hermite functions by  using approximations for the potential V(v) for 
finite values of  v. 
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a 2 = 27/4  

Figure 2 . -Phase  shifts o f  the radiai  waves. 

. . . . . . .  a 2 < 2 7 / 4  v ~ - - o o  

- - a  2 > 2 7 / 4  v ~ + o o  
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4. The Asymptotic Behaviour o f  the Incident Wave 

In the absence o f  the black hole the incident wave would be a plane wave 
(2.6). It is known from Coulomb scattering that a far-reaching potential 
proportional to r -1 alters the incoming plane wave even at infinity. We will 
now discuss this problem for the gravitational case. 

The condition that the light comes from a very distant star implies that the 
light rays (null geodesics) are parallel for r ~ ~ ,  0 ~ n (z ~ ---oo). The equation 
of  null geodesics in the Schwarzschild background (Darwin, 1959) 

dutZ=u u 2 1  1 
dO] - +B-g, u = --r (4.1) 

gives the requested congruence (up to terms linear in the gravitational constant) 
in the form 

sinO 1 ( 1 + c o s 0 )  2 
B(u, 0) = - -  + - const. (4.2) 

u 2 sin 0 

The phase W(u, O) of the incident wave is a solution of  the Hamitton-Jacobi 
(Eiconal-) equation 

(OW]2u2 1 4 
2 

and the lines of  constant phase should be orthogonal to the light rays 

W, uB' u + W, oB' o = 0 (4 .4)  

The solution 

W(r, O) = (r - ½) cos 0 - In r(1 - cos 0) (4.5) 

o f  the system (4.3)-(4.4) differs from the flat space solution W o = r cos 0 
even at large r. 

On this background of  geometrical optics we try the ansatz 

Aa = Aa(r, O) e i~°(w - 0 (4.6) 

for the four potential. Maxwell equations then give (again in the linear 
approximation) 

A o ~ r  ( ico c o s ~ c o s O  1 1 t e i~°(w- t) 
2r cos 0 ] 

r 0 e i~°(w- t) (4.7) A~o ~ - - -  sin ~o sin 
lCo 
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1 (1 2 c o s O - 1  t e  i ~ ( w - t )  
Av ~" 7--to) cos ~0 sin 0 \ + 2r(1 - cos O) / 

1 1 eiCO(W- t) A t ~ - -  cos ~0 sin 0 
ice 2r(1 - cos O) 

This result is confirmed by calculations of  Her r  (to be published), who 
directly computed the field of  an oscillating dipole at infinity. (4.7) is not 
within the gauge used in (2.4). 

The field component Fvt is of  particular interest; due to (2.9) it is rather 
simple written in terms of  (2.11): 

Fvt = cos ~p ~ n(n + 1)(r - 1) DnRn(r)pln(cOs O) e -i¢°t (4.8) 
r 3 

r t= l  

For the incident wave (4.7) it has the form 

3 i i cos 0 ) ei~O(w-t) 
Fvr ~ cos ~p sin 0 1 - 2r  +r(1  - cos O) ~ 2r2(-1---- ~os 0)_ (4.9) 

Neglecting the last term in the bracket, we can write this as 

i cos ~ -ieot ~ " 
Fvt ~ co(r + 1~ e - ~  e~W(r, o) (4.10) 

5. Evaluation o f  the Partial Wave Amplitudes D n 

As mentioned before, the properties of the incident wave should give us 
the partial wave amplitudes D n. At first sight it seems to be rather easy to 
extract them from (4.8) and (4.9): one should expand (4.9) in a series with 
respect to P¼(cos 0) and compare the coefficients with those of  (4.8) for 
large r. But this does not work, because the fields (4.7) and (4.9) are singular 
at 0 = 0 and cannot be written in terms of  PnX (cos O) at all. 

Our first problem, therefore, is to find an electromagnetic field, which for 
r -+ 0% 0 ~ 7r has the same asymptotic behaviour as the incident field given in 
(4.9), but  which is regular everywhere, for all values of  0 and v. This field 
can be constructed using the solution 

= P(1 - ice) e ~ / 2 e x p  [ice(r - ½) cos O] F[ice[l[ice(r - ½)(1 - cos 0)] 
(5.1) 

of  the quantum mechanical Coulomb scattering problem (Messiah, 1961, 
p. 422). The parameters have been adjusted for our purposes; F[a[3  [z] is 
the confluent hypergeometric series, the regular solution of  

d 2F z) dF  
Z dz2-- + (3 - dz - a F  = 0 (5.2) 
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For r ~ oo this wave has the asymptotic form 

t~ ~ e -i°~ln c° e iww(r' O) (5.3) 

Formulae (5.3) and (4.10) indicate that 

o i cos ~p e -ic~t a eiW in oJ __ ~ (5.4) 
Fvt = w(r + 1) ~0 

is a suitable definition of the wanted regular field. 
Now we cari get the Dn by a straightforward calculation. We insert into 

(5.4) the expansion 
o0 

n~o 2n + 1 .n ei~nFn [ _ ~ ,  ( r -  ½)6o]Pn(cOs O) (5.5) 

an = arg F(1 + n - ico) 

of the Coulomb wave function and get 

o ~ i n + 1 eiW tn w 
f v t = - c o s ~  Oe-i~t  ( r ~ ) - ~ +  i)-~2 (2n + 1) eian 

n = l  

x Fn [ - ~ ,  6o(r - ½)]Pnl (cos 0) (5.6) 

The exact solution (4.8) should differ from the incident wave (5.6) only by 
outgoing waves, the amplitudes of the ingoing waves should be equal. 
Remembering 

sin [~(r  - ½) + co In 26or - n 7r + an] (5.7) F. 
Z 

we get 

Dn ( -1 )  n 2n + 1 eiWO/2_ln 2) (5.8) 
= 2~  2 n(n + 1) 

We could have guessed this result, because apart from the unimportant factor 
exp. (leo (1/2 - In 2)) these are exactly the amplitudes of  the ingoing waves 
in flat space time (H6nl, 1961): formula (5.8) only says, that the black hole 
does not alter the amplitudes of  the incoming waves, i.e. it does not alter the 
structure of the source. 

6. The 'Incident' and 'Scattered' Waves 

We are now left with the problem of summing up 

P(r, O) = ~ OnRn(r)pln(COS O) 
n = l  

(6.1) 
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Our goal is to split (6.1) into the incident wave P, which incorporates the 
regular field defined in Section 5, and the scattered wave, which can be treated 
with methods of the usual scattering theory. 

We start from (5.6), writing it now as 

~'vt = cos ~ e -i~°t 2 n(n + 1)(r - 1) o 1 r3 .DnRn(r)P~(cos O) 
n=l  

(6.2) 

which implies 

o 2(--i)n+lr 3 eito(ln2co_ll2) eianFn[_Co, co(r_½)] 
Rn - (r 2 - l)(r - ½) 

(6.3) 

As incident wave we define 

= ~ D.Rn(r)pI(cos O) 
n=l  

(6.3) 

which just gives (6.2) if we apply (2.9). By integrating the equation 

o r - 1 e_i~ot ~ 1 ~ (/~ sin O) Fvt =---7 -c°s* ~72-~ ~-~ 

i COS tp e-lWt e iw In co 

oo(r + 1) ~)-Off 
(6.5) 

which follows from (2.9) and (5.4), we get 

cos o 
o iei~°lnt° r3 [ f 

P(r, O)= ~ - ~  - 1-~ sin 0 
--I 

~(r, O)d cos 0 

el% t - (1 + cos o)  ~o (7-2 ½) Fo [-~o,  ~ ( r  - ½)] (6.6) 

giving us the Debye potential of the incident wave in terms of the Coulomb 
wave function ~, i.e. essentially in terms of  the confluent hypergeometric series. 

The exact solution P(r, O) of our scattering problem can now be written 
in the form 

P(r, O) = P(r, O) + ~ DnP~n(cos O)[R,(r) - ~,~(r)'] = ~ + ~ 
n = l  

(6.7) 
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In order to recognise the properties of the second term, which we will call the 
o 

scattered wave, we make the connection between Rn and Rn more obvious 
by writing down their differential equations ( . . .  indicate terms of higher 
order in r -1) 

= dr - - T - +  7 + . .  ~ r  co z 1 + - - + . . .  I + - - + . .  Rn 
F r 2 r " 

0 d Rn+ 1 dR n 2 n(n + 1) 1 
= dr~- ~- + . . .  -~-r + 6o 2 1 + - - + . .  - r2 + - - + . .  

r r 1]o 
- -~ Rn (6.8) 

and their asymptotic forms 

R n ~ e -i00v - e i00v e -iwA2S a 2 > 27/4 

e -i00v a 2 < 27/4 (6.9) 

An ~ e-i00v _ ei00v(_1)n e-i00(1-2 in 200) e2iOn 

o 
Inspection of these formulas shows that Rn is rather good approximation of 
Rn: for large r both functions differ only in the phase shifts of the outgoing 
waves due to differences in the coefficients of their differential equations of  
order r -z or less. 

The scattered wave 

P(r, O) ~ - e  iwv ~ DnpI(cos O)[e -i00za~S- ( -1 )  n e 2ien e -i00 e 2i00 in 2co] 
r t=l  

(6.10) 

therefore is purely outgoing for large r. A detailed investigation of  the phase 
shifts A2S and an shows that for large n the square bracket in (6.10) gives 
contributions of order n -1 only, so that practically we only have to deal with 
finite sums. 

7. Concluding Remarks 
o 

The splitting (6.7) of the wave into the incident part P and the scattered 
part p is of  course not unambiguous, but our choice seems to be natural. One 
should not be misled by the name 'incident' wave: substantially it is the wave 
changed by the potential r -1, and the usual deflection of light rays, which is 
linear in the gravitational constant, is included in it. 

Our second remark concerns the validity of  equation (6.7): it is the eoxact 
solution of our problem, valid for arbitrary values of  6o and r > 1, and Rn and 
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D n are exactly given by (5.8) and (6.3). Approximations enter in only if we 
use the WBK method to get the asymptotic form for the radial functions 

Rn(r). 
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